Thermodynamic analysis of methane reforming with CO2, CO2+H2O and CO2+O2 for hydrogen and synthesis gas production
نویسندگان
چکیده
Dry reforming of methane for the production of hydrogen and syngas has attracted much attention from both industrial and environmental aspects. The major problem encountered in the application of this process is the rapid deactivation of the catalyst, which is mainly due to coke accumulation and sintering of the catalyst. As an alternative to reduce the coke formation, the combination of CO2 reforming with steam reforming and oxidative reforming has been proposed in literature. The understanding of the thermodynamic behavior of these systems is important to determine the most favorable reaction conditions. In this context, the main objective of this work is performing a thermodynamic evaluation of methane reforming with CO2, CO2+H2O, CO2+O2 and CO2+air. These evaluation were carried out by Gibbs energy minimization and entropy maximization to determine the equilibrium compositions and equilibrium temperatures, respectively. Both cases were treated as optimization problems (using nonlinear programming formulation), satisfying the restrictions imposed by atom balance and non-negativity of number of moles. The GAMS®23.1 software and the CONOPT solver were used in the resolution of the proposed problems. All calculations performed presented a low computational time (less than 1 second). The calculated results were compared with previously published experimental and simulated data with a good agreement between them for all systems. The H2 and syngas production were favored at high temperature and low pressure conditions. The addition of H2O and O2 proved to be an effective way to reduce the coke formation in the systems. The CO2 reforming presented endothermic behavior, but the addition of O2 and air reduced this trend and in some conditions, autothermal behavior was observed.
منابع مشابه
Simultaneous high hydrogen content-synthesis gas production and in-situ CO2 removal via sorption-enhanced reaction process: modeling, sensitivity analysis and multi-objective optimization using NSGA-II algorithm
The main focus of this study is improvement of the steam-methane reforming (SMR) process by in-situ CO2 removal to produce high hydrogen content synthesis gas. Sorption-enhanced (SE) concept is applied to improve process performance. In the proposed structure, the solid phase CO2 adsorbents and pre-reformed gas stream are introduced to a gas-flowing solids-fixed bed reactor (GFSFBR). One dimens...
متن کاملInvestigation of CO2 and H2O Addition to Natural Gas for Production of Synthesis Gas
General modeling and optimization of syngas production via noncatalytic autothermal partial oxidation of methane are carried out using our developed scientific software which was based on the minimization of total Gibbs energy. In this work, a novel application of the direct search and Newton-Raphson methods was introduced to apply to optimization of a complex chemical reaction. Sensitivity ana...
متن کاملDetermination of Suitable Concentrations of H2O and CO2 in the Feed of Syngas Production (RESEARCH NOTE)
Modeling and optimization of synthesis gas production via the non-catalytic partial oxidation of methane (NCPO) were studied by minimizing of Gibbs free energy, and comparison studies were carried out to analyze the mechanism of syngas production. For this purpose, concentrations of CO2 and H2O in the feed were optimized in specified pressure and temperature, such that the hydrogen to carbon mo...
متن کاملEstimating the second virial coefficients of some real gas mixtures and related thermodynamic views
Using the Gaussian 2003 software and MP2 /6 – 311+ G method for the C2H4 : O2, CO:Cl2 andCO2:CO2 pairs and MP2/6-311++G** method for the CO2:H2O pair and B3lyp/6-31G methodfor the O2:O2 pair the optimized interaction energies between two considered pair molecules ofstudied gases(C2H4:O2, CO:Cl2, CO2:H2O, O2:O2 and CO2:CO2 pairs) as a function of thedistances between the centers of two considere...
متن کاملKinetic Model Study of Dry Reforming of Methane Using Cold Plasma
ABSTRACT In this work, the dry reforming of methane was studied using a corona and glow discharge plasma microreactors. A chemical kinetic model was developed to understand the reaction better. The modelization allowed prediction of the reactants conversion according to the energy transfer to the gas (P×τ). The β value is trait of the energy cost, whatever this value was leeser indicated ...
متن کامل